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ABSTRACT

A mathematical solution is proposed for the two-dimensional turbulent

mixing and advection equation governing mass transport in open channel

flow. The solution is obtained through the use of image theory. The

solution is adaptable to a new, rapid, and inexpensive method for

determining localized dispersion and diffusion coefficients for mathematical

water pollution modeling. Local field tests of the method were conducted

and the results indicate that typical stream dispersion coefficients are an

order of magnitude smaller than those generally reported in the

literature. The method presented will lead to more accurate physical

transport modeling and will thus allow better evaluation of the chemical

and biological processes occurring in natural streams.
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CHAPTER 1 INTRODUCTION

1.1. Justification

Within the past decade the problem of water pollution control has

come to be recognized as a major technological and legislative challenge.

The Water Quality Act of 1965 outlined what was thought to be a compre-

hensive plant of attack. At the State level, all major water bodies were

to be classif ied as to use. Water quality standards associated with each

use-class would then be adopted. Thus, appropriate wastewater treatment

could be implemented at a level compatible with the established water

quality goals. Unfortunately the progress to date has fallen far short

of original expectations.

Costs associated with wastewater treatment are high. Federal

(Environmental Protection Agency) and state grant-in-aid programs have

been instituted to relieve local government of part of the capital costs of

treatment plants and major intercepting facilities. Major collection

facilities are also eligible for aid under other federal programs (e.g.

Department of Housing and Urban Development, Farmers Home Administration).

Operating costs associated with sewage treatment must be borne entirely

by local governments.

A primary interest of the environmental engineering profession has

been to develop and apply less costly techniques to accomplish a given

degree of treatment. Since receiving stream standards are applicable

rather than effluent standards, a major consideration arises as to what
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degree of treatment is necessary in order to meet specific stream quality

criteria. Specific answers are not readily obtained. Multiple local

sources of wastewater complicate the matter further. While methods of

systems analysis are well suited toward solution of such problems the

methods pre-suppose the availability of reasonably accurate mathematical

models describing interactions of the physical system. Such models

have been difficult to formulate and, when applied, have been of marginal

accuracy. Consequently a truly rational approach to water quality manage-

ment has been retarded.

Many investigators have recently turned their attention to basic

water quality model development. The success of their efforts to date

is essentially unknown as simulation of the behavior of the same system

from which experimental coefficients were determined does not truly

verify such models. However, various existing physical systems have been

simulated mathematically with substantial success..

1.2. Objective

The objective of this thesis is to present a refinement in the appli-

cation of contemporary mathematical water quality simulation techniques.

The proposed refinement concerns the physical mixing processes termed

dispersion and diffusion. A method is formulated whereby field measurement

of diffusion and dispersion coefficients in turbulent flow systems may be

rapidly and economically obtained.

1.3. Background _

If natural streams possessed no assimilative capacity the question as

to what degree of treatment should be given would become technically,

at least, quite trivial. This, however, is not the case. The essential
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function of a mathematical model is to predict accurately the resulting

stream water quality due to some specific network of artificial and/or

natural waste discharges. The most desirable model is one in which both
i

temporal and spatial distributions of water quality are predicted under

unsteady flow conditions. The model itself is simply an equation or group

of equations which relate a set of independent variables to a set of

desired dependent variables. Thus any mathematical equation which describes

the behavior of some physical, chemical, or biological phenomenon is a

mathematical model. Newton's Laws of Motion, Boyle's Gas Laws, and the

Biochemical Oxygen Demand (BOD) equation are all examples of mathematical

models.

The complexity of any model varies directly with the complexity of

the system represented. The model for a sphere falling in a vacuum is

easily .written. Solutions for the acceleration, velocity, and displace-

ment of the sphere with time are readily obtained by differentiation or

integration of the original model (equation). However, consider a non-

symmetrical object falling in a heterogeneous atmosphere with, variable

winds prevailing. The model for this case would be quite difficult to

formulate and particular solutions for velocity, acceleration, etc. as a

function of time may not be analytically possible. Approximate solutions,

however, might be obtained by making certain assumptions concerning the

forces acting on the body. For example, one might linearize atmospheric

density variations, determine an effective (resultant) one-directional wind

force and, approximate the object shape by substituting an appropriate

geometric form.
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A natural stream or estuary represents an extremely complex, dynamic

environment. When man's waste products are deposited into such a system,

the complexity of the system's reactions increases even further. It is

doubtful if man will ever devise a model to describe accurately all

resulting reactions. On the other hand, the benefits to be derived from

even the crudest mathematical simulations of system response are of

great economic importance since such simulations will serve as a basis

for rational water quality decision making.

The first successful attempt at stream modeling was made by

E. B. Streeter and W. B. Phelps in 1926 (1). Using the Ohio River for their

verification, the authors were able to approximate dissolved oxygen con-

centrations downstream from a waste source. The simplifying assumptions

made by the authors were rough, to say the least, but nevertheless the

model worked well enough to show that the system could be mathematically

approximated.

The mathematical computations required in using the Streeter-Phelps

formulas were rather tedious and in 1948, Thomas (2) worked out a nomo-

graphic method which greatly simplified the calculations. Thomas also

presented a method of calculating the pollution-load capacity for a

stream using the basic Streeter-Phelps equations. In 1958, Churchill (3)

presented a totally different model of stream purification based entirely

on statistical analysis. However, large amounts of data were needed in

order to apply the method and the results were no better than those

resulting from the Streeter-Phelps formulation.

In 1960, D. 0. O'Connor (4) brought new life into the modeling

field with his paper "Oxygen Balance of an Estuary." In this paper,
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Dr. O'Connor brought together much of the previous individual work which

had been done in refining the coefficient determinations of the

Streeter-Phelps equations, but O'Connor's biggest contribution was his

inclusion of the well known Fickian diffusion theory in his mathematical

model. Mathematical models of river and estaurine waste assimilation

have developed rapidly since that time. Steady and unsteady state models

have been developed for one- arid even two-dimensional flow. Both numerical

and analytical techniques have been used in gaining solutions for the models,

The purpose of this paper is to present a refinement in the appli-

cation of the modem mathematical models which have been proposed by the

above authors. This refinement is concerned with the physical concept of

mixing as employed in the contemporary models. In the text to follow,

a rational method shall be given whereby field determination of mixing

coefficients can be accomplished much more rapidly and economically than

is presently possible. Further, the method should allow a much more

accurate determination. To simplify the use of the method a general FORTRAN

IV program is given for rapid analysis of the coefficients utilizing a

minimum amount of field data. Finally the results of a test run of the

method are presented.
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CHAPTER 2 FUNDAMENTALS OF TURBULENT MIXING

2.1. Mixing Zones

When a conservative material, dissolved or suspended in a liquid

is discharged continuously in a steady turbulent stream, a steady state

concentration profile will develop downstream. Such a system may be

divided up into three mixing zones. Figure 1 depicts the steady state

condition which will appear. In the zone immediately adjacent to the out-

.fall, a three-dimensional concentration profile will appear at every point,

This is, of course, due to incomplete mixing in the lateral, longitudinal

and vertical directions. This zone is designated as the three-dimensional

mixing zone. The lower boundary of this zone will be marked by the point

at which all vertical concentration profiles vanish. Downstream of this

boundary will be located the two-dimensional mixing zone where concentra-

tion profiles exist only in the lateral and longitudinal directions.

Vertical gradients are the first to disappear in a natural stream as the

depth of the stream is generally an order of magnitude less than the width,

However, eventually the lateral gradients also will vanish and this point

then marks the lower boundary of the two-dimensional mixing zone as well

as the upper bound of the one-dimensional mixing zone. The one dimensional

mixing zone extends indefinitely. This zone is by far the largest zone

and justly receives the greatest amount of mathematical treatment. A

concentration gradient exists only in the longitudinal direction. In

describing, mathematically, the concentration profile in this last zone,

a one-dimensional model (equation) will be appropriate. This situation

simplifies the mathematical model.



-7-
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Figure 1. Turbulent Mixing Zones.
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2.2. Transport Mechanisms

Only three physical mechanisms are at work causing non-reactive

materials to become transported in a stream: molecular diffusion,

advection and turbulent mixing.

Molecular diffusion is an extremely slow process which is due to

Brownian (random molecular) motion. In 1855 Pick (5) proposed the

theoretical model of molecular diffusion to be

- n A
3t m 85

3M
His equation states that the time rate of mass transfer, -^ through

3Cthe surface A, is proportional to the concentration gradient — across

that surface. The constant of proportionality Dm was termed the molecular

diffusion coefficient*. The direction of mass transfer is from a region

of higher concentration to one of lower concentration. Now since a region

of initially high concentration will suffer a decrease of mass with time,

the rate of mass change is logically considered to be negative. Thus a

minus sign is applied to the right side of the equation allowing the

coefficient to take on a positive value. As an example of molecular motion,

consider the injection of a drop of dye into a beaker of visually

quiescent water. With the progression of time, the natural Brownian motion

of the molecules will cause the dye to diffuse in all directions.

Eventually, the dye would become completely mixed uniformly throughout

the entire container. Once mixed this uniform concentration pattern would

remain indefinitely. Molecular diffusion, however, is not a rapid

*Molecular diffusion is considered to be a completely random phenomenon.



phenomena and its significance in mixing and transport of materials in

natural streams is so minor that it can safely be neglected (6,7). ;

Advection is the name normally given to the longitudinal mass

transport occurring as a result of the hydraulic driving force. Transport

by advection only is commonly referred to as plug floyror flow without

mixing. Mathematically, advective mass transport is written as

2C = -U ^3t u 3X

where U, the average cross-sectional velocity is the driving force.

Occasionally the term "convection" will be used synonomqusly with

advection. In view of the directional implication of .the prior term,

such usage is deemed.inappropriate.

Turbulent mixing is the mechanism by which materials are transported

in all directions as a result of the natural velocity gradient forces

existing.in turbulent flow. In a turbulent stream, unsteady velocity

gradients are .evident in the lateral, vertical and longitudinal directions

as a result of the hydraulic properties of the stream combined with the

viscous properties of the fluid. There has been a great deal of confusion

in the literature regarding turbulent mixing terminology. Recently

Edward Holley (8) .attempted to clarify this matter by publishing a paper

solely devoted to defining the term "diffusion" and "dispersion".

Holley's descriptions are accepted by this writer and will be used through-

out this paper. In order to characterize these terms, certain parameters

must first be identified.
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The cross-sectional model of stream flow shown in Figure 2 assumes

a stream of infinite width so that there is no variation of any parameter

in the direction perpendicular to the longitudinal plane. A slug of

tracer is injected at time t . While moving downstream the tracer

spreads vertically and longitudinally causing a decrease in concentration

at any point within the cloud. The flow has a time averaged horizontal

velocity u, distributed vertically as shown in Figure 2. This u distribution

is the velocity profile which could be measured by a pitot tube or a current

meter. The instantaneous velocity u at any point might be distributed in

time very irregularly as shown in Figure 3 for the condition on line AB.

Thus another velocity distribution u1 can be defined as the difference

between u and u at every point. The distribution is termed the instantaneous

fluctuation from the time average velocity. One may then write that

u = u + u1

The average value of u over the vertical depth is defined to be U.

Now the velocity distribution defined by the difference between the cross-

sectional average, u, and the time average, u, is designated as u". One

may write then that

u = U + u"

In an analogous manner, the concentration distributions depicted

in Figure 3 may be defined. The instantaneous concentration at any point

is c. The time average concentration at a point is c, where this is

normally the value determined by analysis of a grab sample. If it could

be measured, c1 would be the instantaneous fluctuation from the time

average c.
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Figure 2. Two-dimensional Transport (after Holley (8)).
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Figure 3. Parameters of Turbulent Transport (after Holley (8)).
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Thus

c ^ c -i- c'

With these definitions in mind, the terms diffusion and dispersion

may be discussed. Both processes concern the spreading of materials which

are dissolved or suspended in a fluid. The term "diffusion" implies

motions which are entirely random. Diffusive movement occurs as a result

of random path selection by finite fluid cells in a velocity field.

Dispersion is considered to be a more orderly mixing process. Dispersive

movement occurs as a direct result of the actual character of the velocity

field. The process of advection is thus strongly related to the process

of dispersion. Thus cells randomly select a velocity path (diffusion)

but are transported at a velocity consistent wi th the path selected

(dispersion). Following a finite advection period the cell randomly

selects a new path (diffusion).

In one-dimension the processes of mixing following a point source

outfall may be analogous to the "drunkard's walk" whereby the late night

closing of a tavern causes all the intoxicated occupants to be removed

outside to the street. After each interval of time, each "drunk" moves

one step length but whether the step be forward or backward is entirely

random. Now regularly scheduled bus service is available at every street

corner in the area and each "drunk" who happens to be at the right corner

and at the right time may be collected by the bus and removed to another

location. The drunks get on and off each bus randomly, but since the

buses operate on fixed schedules the final distribution of drunks depends

strongly on the bus schedule. The .bus schedule is analogous to the time
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average velocity distribution since both are fixed. The final distribution

of "drunks" or cells resulting from this non-random transport is referred

to as dispersion. Dispersion is caused by "busing" of the particles, that

is advection at the different velocities of different stream lines. The

diffusive process causes the cells particles to "get on and off the bus".

The primary mechanism for spreading (mixing) in a stream is the time-

average spatial distribution of velocity, u. Of lesser importance is the

mechanism of turbulent diffusion caused by the random temporal velocity

distribution, u1. These spatial velocity variations are far more

effective at spreading out particles than are the temporal variations.

Consequently, the term "dispersion" is applied to the spreading out due to

spatial velocity differences, and the term "diffusion" is applied to the

spreading by random temporal velocity fluctuations.

The first important experimental study of dispersion in turbulent

flow was published by G. I. Taylor (9) in 1954. He approached turbulent

mixing in a manner directly analogous to Fickian molecular diffusion.

Taylor experimented with turbulent pipe flow and thus spatial velocity

variations were negligible. This greatly reduced the dispersion effect

and relegated the problem to that of one-dimensional transport. The one-

dimensional diffusion-advection model was written as,

2
i£ + II l£ =n9 c ( - * }
3t + U 3X U

3X2 UJ

where D was designated as the coefficient of turbulent diffusion. The

coefficient D is thus a composite of the hydraulic and viscous properties
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of the particular flow system and is not intended to be directly measurable

From the discussion just presented, it is obvious that Taylor's pipe flow

model is not directly applicable to open channel flow. Many workers have

nevertheless directly applied Taylor's model to one-dimensional open

channel flow. However, a rather rigorous mathematical analysis of the

diffusion-dispersion-advection process yields an equation, which when

applied solely to the one-dimensional mixing zone, reduces to precisely

the same mathematical equation,

3t 3X 8X2

In this equation, E is designated as the coefficient of longitudinal

dispersion. Turbulent diffusion is included in the dispersion term.

Workers who have supported and utilized Taylor's pipe diffusion model

for one-dimensional stream analysis, lack in terminology only.

Mathematically, the Talor equation is generally acceptable for

one-dimensional mixing, but the mixing coefficient should be referred

to as a longitudinal dispersion coefficient, not a longitudinal diffusion

coefficient. Oceanographic and atmospheric turbulent
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diffusion is also generally treated on the basis of this model (6, 10).

2.3. Advective-Mixing Equation

The basic equation used by Taylor (9) will now be developed from a

one-dimensional mass balance analysis. It should be kept in mind that

such an analysis is applicable only within the one-dimensional mixing

zone beginning some finite distance below the outfall point. Figure 4

depicts a reach of length AX of a rectangular channel within the one-

dimensional mixing zone. The cross-sectional area A is considered constant

for the reach. The instantaneous concentration at the center of the reach

is c. The instantaneous velocity is in the positive X direction. The net

mass transport through the center of the reach is considered to be the sum

of the advective transport, uAc, plus the diffusive mass transport as
gP

defined by the Fickian diffusion approach, -DA-r- . Thus

Transport thru center = uAC-DA y

The mass transport into the reach can then be approximated by writing a

Taylor series expansion at the -- y location and truncating the series after

the first order term.
a AX

Advective mass inflow = uAC + -^- (uAC) (-̂ -)

Diffusive mass inflow = -DA || + |y (-DA ff)(~̂ f)

Total mass inflow = uAC + |̂  (uAO(--̂ -)-DA || + |y (-DA |f)(-̂f)

The mass transport out of the reach is formulated similarly at the

downstream boundary:
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NFLOW
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t AX i
-44

A X
2

UAC -

OUTFLOW

UAC+S, (UAC)
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Figure 4. Flux Rates Through An Elemental Reach of A*Rectangular
Stream Channel.
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Advective mass outflow = uAC + —,- (uAC) (-i)
i* A i' f-

i\f" '\ '\p j\y

Diffusive mass outflow = -DA-rrr + W ( ~°A -77) (^5-)
0 A O A O A t

Total mass outflow = uAC + '.JL (uAC) (% -DA|£ + |£ (-DA|&) (^4)
oA ^ oA oA oA t

Now a mass balance may be written for the reach utilizing the Law of Mass

Conservation; that is, the rate of accumulation of mass is equal to the

rate of mass inflow less the rate of mass outflow. The rate of mass change

^may be written as -^(AAXC) since the mass within the reach is AAXC. Thus,

~ (AAXC) = — (uAC) AX + |y (DA |£) AX (5)

Now for a small elemental reach the area A may be considered constant.

Dividing through by AAX gives,

and for u= constant over the elemental reach then,

= -11 —u 3X

and thus,

r\ /> i-^ f* t\ "\f*
Q\J _ dl_» , o /p. o\j \
~-vf~ ~ ~" r, v f\ Y V " •> V 'd (, oA o A o A

Finally for D=constant over the reach, the above reduces to

3X
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Equation 8 serves as a basis from which many contemporary models have

been derived. It has already been pointed out however that the above

analysis is incorrect since it is founded on the notion that longitudinal

mixing is entirely random. The more accurate and rigorous analysis, however

resolves into the same equation, although the coefficient D must be referred

to as a dispersion coefficient. The refined analysis will be presented in

the next section of this paper. The result, for one-dimensional mixing,

will nevertheless be the same as the above basic Taylor equation.

An equation governing two-dimensional diffusive advection is readily

obtained as above by simply applying the same Taylor mass balance approach

for one more transport direction.

Here, D and D refer to turbulent diffusion coefficients acting in the
y

longitudinal and lateral directions. By assuming the reach is relatively

small the diffusion coefficients may be considered constant, thus

vy

One might now assume that D and D are equal and the equation will
J

simplify to

2 2
^ 4. n <^ , 3C _ n ,9C , 9 C \
at + u ax + v ay ' D (^ ^

However, Equations 9 and 10 are not the appropriate equations for stream-

flow analysis.
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Equation 9 was derived from the Taylor turbulent diffusion analysis.

Instead of considering turbulent diffusion, the Taylor derivation should

have dealt only with molecular diffusion, D since u, v, and c represent

instantaneous values and thus by definition must incorporate turbulent

diffusion and dispersion. Since molecular diffusion is considered constant

in any direction, the correct result of the Taylor analysis of two

dimensional flow would be

9C

Now this equation would be completely correct for two-dimensional open

channel flow as well as pipe flow. The equation represents the movement

of suspended or dissolved material in a two-dimensional flow field. It

is emphasized, however, that the instantaneous values of u and v must

be used in the equation. Also any solution to the problem should yield

instantaneous values of c. The terms u and v cannot ordinarily be

measured and instantaneous values of c are of little value. What is measur-

able are the values of u and c. Furthermore, the value of v is zero for

essentially straight channel flow since there is no net flow through the

stream boundaries. Now the following substitutions may be made in

Equation 10.

u = u + u1

C = c + c1

v = v1
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Now averaging the modified Equation 10. with time gives

On i)y *

where the bars indicate time averaged values. The last two terms of

Equation 11 include advection associated with the u1 and v' fluctuations.

It has been confirmed experimentally that for many situations this advective

transport follows a diffusive process analogous to Pick's First Law,

that is, that the transport associated with turbulent fluctuations is

proportional to the gradient of c (11), This is not difficult to visualize

since these fluctuations would be distributed randomly. Thus the following

equations may be introduced to represent the fluctuating turbulent

advection.

u 'c 1 = - D
X

W = -D

Again D and D would be designated as longitudinal and lateral diffusionA y
coefficients. Now Equation 10 may be rewritten as

9X J 9y

Equation 12 is the equation for two-dimensional mass transport which includes

both turbulent and molecular diffusion. The equation applies to both

one- and two-dimensional mixing zones, since the one-dimensional flow is

a special case of two-dimensional flow.
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In applying this equation to the one-dimensional mixing zone the

following substitutions are made

u = U + u"

c = C + c"

where U and C are the average values of velocity and concentration in a

cross-section. The term u cannot be replaced by U in Equation 12 since

such a substitution would not account for the advection due to the velocity

variation u". Now by integrating or averaging Equation 12 with respect

to time along with the above substitutions, the equation may be rewritten

as

The double bar indicates the average value for the cross section. Now

the transport associated with u" is proportional to the longitudinal

gradient (7) so that

Ef = -IT̂  +(Dm + Dx) f forc"«C (14)

The transport coefficient associated with the longitudinal gradient of

c in Equation 14 is called the coefficient of longitudinal dispersion.

Thus the longitudinal molecular and turbulent diffusion are combined with

the convective transport due to lateral variations in velocity and

concentration to make up the dispersion coefficient, E. Now in uniform

turbulent flow, both molecular and turbulent diffusion contribute only

about 1% or less of the total dispersion (12). Thus the last term of
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Equation 14 may be neglected. Combining Equations 13 and 14 gives

at aX 9X2

This result is precisely that obtained by Taylor except for the terminology

Again this equation applies only to the one-dimensional mixing zone. The

equation is not valid near a point outfall, but becomes applicable only

when vertical and lateral concentration gradients become negligible

downstream from the outfall. In this one-dimensional mixing zone the terms

diffusion and dispersion are often used interchangeably; however, the

problem resolves itself since the mathematical model is the same in either

case.

2.4. Methods

There are numerous methods presently available for determining the

value of the longitudinal dispersion coefficient. The methods may be

classified as either empirical or analytical.

2.4.1. Empirical Approach

In 1954 G. I. Taylor presented the results of a careful laboratory

study of the turbulent diffusion process in pipe flow (9). Taylor came

up with the following empirical relationship

D = 10.1 au*

Where, a = Pipe Radius (U)

u* = Shear Velocity - /T /p (L/T)

YO = Wall Shear (L2/T2)



-24-

Elder, In 1959 (13) then adopted this approach to two-dimensional flow in

an infinitely wide open channel. He found

D = 5.9 du*

Where d = Depth of Flow

Elder obtained his experimental results using a 1 cm deep water table of

large width. Experimental results in natural streams, however have not

substantiated these laboratory results. In fact dispersion coefficients

for'natural streams have varied from 50 to 700 ru* (r = hydraulic radius)

according to Fischer (7) . The empirical method is, nevertheless occasionally

used under certain conditions.

Harleman (14), has modified the Taylor equation for use in the upstream

tidal region of streams.

D = 77 rUxtRH
5/6

Where U . = Tidal velocity

RU = Hydraulic Radius

r = Manning Roughness

The supposition here is that E depencfe primarily on the magnitude of the

oscillating tidal velocity. In substituting this expression for E into

the one-dimensional mixing equation (Equation 15), an analytic solution for

the model will no longer be possible. Thus the empirical approach to the

diffusion coefficient is rarely used.

2.4.2. Analytical Approach

The second and most popular approach to determining the dispersion

coefficient is obtained by employing analytic solutions to the steady

and unsteady one-dimensional models.



In a non-tidal stream the unsteady one-dimensional dispersive-

advective equation (Equation 15) is readily solved for the following

conditions. If at time' t = 0 a quantity of mass M is injected at x = 0

while at all other points c = 0 then operational methods will give the

solution (15) where A is the cross sectional area.

2
/ 4.\ M r(x-Ut) nc ( x f t ) =. — — — exp [* ' •]

This solution is transcendental in E but can be solved for E by noting that

the relative maximum concentration will occur when the argument of the

exponential is zero, that is

for x-Ut - 0

M
c =

max 2A /rtt~

cn that F - U-Ut)2/4tso tnat L - --y— /> Try
ln (Cmax/CT

Thus to find E, a known mass of tracer is injected and a spatial concen-

tration profile is measured for any time t. The curve resulting should

be normally distributed. The dispersion coefficient may then be calculated
2 C

from the slope of ^^ versus In (-~- ). Due to the difficulty of

measuring a simultaneous spatial concentration profile, several methods

have been proposed to extract a value for E from the more readily obtainable

time-concentration profile. It should be noted here however that the

time concentration curve is not normal but is skewed as the denominator

changes with time. Thackston, Hays and Krenkel (16) have performed an

extensive analysis of all the popular methods of calculating E in streams

from time concentration profiles. Their conclusions were that all methods
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are unreliable at host., .nut highly inaccuratr at. worst . . - T h e authors a l so

concluded that acceptable accuracy can only ho provided through a least

squares minimization analysis of the observed and theoretical concentrat-

ions. Such procedures are incorporated into the proposed method of

determining E to be presented in this paper.

The ordinary method for determining the dispersion coefficient in an

estuarine condition is to utilize the natural salinity gradient in

conjunction with the steady state solution to the one-dimensional

dispersive-advective equation. The steady state one-dimensional mixing

form of Equation 15 is

2 2
n 3C _ r f) C , dC _ r- d C
u MT ~ L —? or u TfiT " L —7

3X ^ d* dx^

The solution for this equation for the boundary condition C = C (the

constant salinity of the ocean) at x = 0 is

C(x) = CQ exp (-|£)

This equation is then solved for E by

TMC/CO)

Although a steady state salinity intrusion is not physically possible

due to the oscillating tidal effect, a pseudo-steady state may be established

by interpreting the differential time as one discrete tidal cycle.

If the instantaneous time utilized is either high water slack (HWS) or

low water slack (LWS) then the net velocity within the estuary will be

a result only of the fresh water discharge. Thus the effect of tidal

velocity is excluded and the calculation of U is greatly simplified.
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Now to determine the turbulent diffusion coefficient a longitudinal

salinity profile is determined at either HWS or-LWS. The value of E is

then calculated as the slope of UX/2 versus in C/C plot (Figure 5).

2.5. Limitations of Present Techniques

For .the methods previously discussed certain critical limitations

arise primarily from the assumption of one-dimensional mixing. For non-

tidal streams the assumption of one-dimensional mixing can be theoretically

justified by restricting the mathematical model to a reach

beginning a good deal downstream of the outfall point. The upstream

boundary of the reach (the one-dimensional mixing zone as described in

Section 2.1) is defined as that point where lateral and vertical concen-

tration gradients are no longer present. In applying the methods for

calculating E using both the empirical and the theoretical approach,

it is mandatory that the upstream boundary be located both in 'space and

time. Employing a one-dimensional mixing model to a two- or three-

dimensional mixing zone is by definition inappropriate. The corollary

however is not true as the one-dimensional and two-dimensional models are

special cases of the three-dimensional model.

Locating the upstream boundary of the one-dimensional model is a

tedious problem. It may be located by observing the downstream concentrations

of a continuous discharge of a tracer material. Lateral traverses with a

continuous recording instrument will facilitate locating the one-dimensional

mixing zone boundary. Time of travel to that boundary location must also

be determined. An instantaneous tracer drop from the outfall is well suited
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Figure 5. Determination of E by the Steady-state Salinity Profile of an
Estuary.
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for this purpose once the special location of the boundary has been

identified. It should also be noted that discharge is a prime factor

in determining the distance and time of travel to the one-dimensional

mixing zone. As the discharge varies, so also does the boundary.

The only apparent way to get around this difficulty of locating

the upstream boundary of the one-dimensional mixing, zone is to introduce

the tracer instantaneously and uniformly in the cross-sectional plane,

thus precluding any need for lateral and vertical mixing. If the stream

is relatively shallow, a single traverse while releasing the tracer at

a uniform rate.will accomplish the objective. This procedure is often

used in field studies. If not entirely accurate, the method is at least

far superior to estimating the one-dimensional boundary for a point release,

The remaining alternative of neglecting the existence of the three- and

two-dimensional mixing zones is considered most unacceptable by this

writer except in small, highly turbulent streams.

Another item of considerable significance is in order for discussion

at this point. Once the mixing distance for a particular outfall has been

established, then the appropriate stream reach should be deleted in the

actual mathematical water quality model. Furthermore, since most stream

models involve rather large drainage areas and therefore several liquid

waste outfalls, each outfall will require an appropriate mixing distance

before the one-dimensional model can be applied. Thus in areas where

multiple domestic and industrial waste outfalls discharge to a major

stream the one-dimensional model appears most inadequate. This problem is

overcome by treating each outfall and constructing a one-dimensional
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model by superposition. The fiit.il concentration at some point down-

stream of, say four, outfci l ls will bo equal to the sum of the concen-

trations due to each of the four individual outfalls, but only in the

reach where complete vertical and lateral mixing has occurred for each

discharge. Thus, the final model will in effect be the result of the

appropriate superposition of four individual independent models.

Models of estaurine systems pose additional problems. The major

drawback to the salt-balance method of calculating dispersion coefficients

is the inaccuracy of the assumption of one-dimensional mixing. The most

obvious departures from this assumption are the density currents caused by

temperature and salinity differences in ocean and stream waters. These

effects lead to vertical salinity gradients which limit vertical mixing. Also

differential heating of the waters in the littoral zone (especially if

tidal flats exist) cause lateral advective and diffusive movement. With

the present methods available there seems to be little hope of overcoming

the inadequacies of the one-dimensional assumption. Even if the

pseudo-steady state method were to give a reasonable but crude estimate of

longitudinal dispersion, actual application of the model is quite difficult,

especially when multiple outfalls are present.

In the pseudo-steady state approach, the time increment is chosen

to extend from one complete tidal cycle to another, selecting the discrete

time as instantaneous high of low water s lack. Then, just as in the case

for streams, the mixing distance from any given outfall may be determined

experimentally by the continuous addition of a tracer. The major short-

coming of these procedures is that a continuous model of the system will
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not be available so that any diurnal fluctuations cannot be calculated.

Also a rather large amount of tracer material and many chemical analyses

are required. .

A variation, of the pseudo-steady state type model is to simulate
<" . '

a continuous one-dimensional mixing model by substituting a sinusoidal

expression to simulate the oscillating tidal velocity. This is commonly

done. However such a continuous model would be continuous only in the

sense of time but not longitudinally as the one-dimensional mixing

equation would not apply immediately up or downstream of existing waste

outfalls. By superposition of an independent input and mixing distance

for each outfall, sections of the model may be simulated, however the

model will not provide continuous spatial predictions.

2.6. Significance of Dispersion

In the one-dimensional dispersive-advective model, the significance

of dispersion varies greatly. Many researchers will neglect the dispersion

process altogether for stream models in view of the greater importance

of advection. In contrast, the process of advection may often be neglected

in estuary models in view of the greater significance of dispersion. The

basis for this will now be discussed.

A fundamental difference from a mechanics point of view between

a stream and an estuary, is characteristic velocity. The average sectional

velocity of a stream is normally higher and far more constant, in time and

space, than that for estuaries. The net or average advective velocity

of an estuary is typically at least an order of magnitude smaller than

that of its influent stream. As an example, a characteristic velocity

for streams may be 20 mi/day while for estuaries a velocity of 1 mi/day



(average advective velocity over a 24-hour period) might apply. Steady

state spatial concentration profiles for one-dimensional mixing and

advection of wastes below an estuarine and a stream outfall are shown in

Figure 6 for various values of E. The effect of E for the typical stream

situation is quite obviously of limited significance. By contrast, the

relative effect of E for the estuary case is significant. Both curves

can be readily developed for particular values by applying Equation 16,

The results of a similar analysis for the unsteady case are

illustrated by Figure 7, .a temporal concentration plot one mile down-

stream of the outfall. Particular values may be developed by applying

Equation 15. .

In considering the significance of dispersion in natural streams and

estuaries one must also consider the relative values of the parameter

being modeled. Time-concentration curves for a tracer mass release may

vary over several orders of magnitude, and so a variation in the dispersion

coefficient will have a substantial effect on the resulting curve. On

the other hand, if the parameter to be modeled is dissolved oxygen then

the possible range of values is considerably reduced. Dissolved oxygen values

will normally be in the zero to ten parts per million (ppm) range with

about 1 to 3 percent accuracy. Thus when dissolved oxygen is the parameter

to be modeled, the degree of accuracy needed for the dispersion coefficient

will be minimal.

Holley (8) has suggested that the relative importance of

dispersion may be investigated for a given situation by forming a
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Figure 6. Steady-state Spatial Concentration Curves Indicating Significance
of E in Streams and Estuaries.
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Figure 7. Unsteady Time-Concentration Curves Indicating Significance of I
in Streams and Estuaries.
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dimensionless term

u -
dispersive rate E |& E 1 aC E a(1nC)

advective rate UC U C 3X U 9X

Since H is defined as the ratio of dispersion rate to advection rate, a

value of H less than unity indicates that the tracer is transported more

slowly by dispersion than by advection. Thus for very small values

of H the dispersive transport may be neglected. For a particular uniform

flow, E and U will be constant, thus the value of H will depend on the

steepness of the concentration gradient (more precisely the steepness

of the gradient of the natural logarithm of the concentration). Since the

oxygen concentration in an oxygen sag curve will change by only a few

parts per million over distances of several miles, the value of H would

be quite small. A BOD curve however might vary by one order of magnitude

or possibly two in the same reach. The value of .H would then be larger

indicating that dispersion is a significant factor in the transport of

this material.

A critical value for H, called H , would be chosen according to the
\+

degree of accuracy required. If it is sufficient to neglect factors

contributing less than 1% of the transport, then let H = 0.01. Thus, the
\+

dispersion process may be dropped from the analysis if H <.01. One
w

should remember here, however, that the effect of dispersion is cumulative

so that no matter how small H becomes there may still be a significant

dispersive effect very far downstream.



2.7. Recent Results

Three of the most extensively studied basins in this country in

regard to pollution modeling have been the Delaware River, the Potomac

River and San Francisco Bay. The dispersion coefficients reported for

these systems have been widely variable. In 1958, Kent (17) reported
' 2values of E ranging from 4 to 14 mi /day in the Delaware estuary. Work

by O'Connor in 1963, 1965, and 1968 (18,19,20) on the Delaware suggests
2

E to be in the 1 to 6 mi /day range. Harleman (14) however reports

2that the proper E range for the Delaware estuary is about 2 mi /day,
p

while Thomann (21) is convinced that 2 to 5 mi /day is more appropriate.
2

Recently, Paulson (22) proposed values of E in the range of 4 to 6 mi /day..

An examination of dispersion coefficients obtained for the Potomac

estuary reveals an even wider variation. Custer and Krutchkoff (23)
p

report E to be in the 2 to 5 mi /day range while Harleman (14) reports
2

E to be in the 0.1 mi /day range. Prych and Childey (24) however have
2

argued that E must be on the order of 1 mi /day for the Potomac.

Glenne (25) reports an extremely wide range of E values for the
r>

San Francisco estuary, .6 to 40 mi /day. Selleck (26) however recommends
2values of 1 to 3 mi /day for the San Francisco Bay. These latter values

are accepted by the Cal i forn ia Water Resources Board (27 ) .

Dobbins (28), DiToro (29) , Thomann (30) and O'Connor (31) agree that

dispersion may be neglected for stream pollution models while

Dresnack (32), Fischer (33), Harlemen (14), and, Thackston, Hays and Krenkel

(16) feel that it should be included in these models. All researchers

agree that longitudinal dispersion is of major significance in estuary

modeling.
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Several field tests were run in the course of this study to determine

a value for the dispersion coefficient for a particular stream. The

results indicate that the dispersion coefficients reported by many con-

temporary investigators are considerably larger than the values found for

the .test stream. The writer's results compare more favorably with

Holley (8) who suggests dispersion coefficients for streams as low as

0.01 square miles per day.
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CHAPTER 3 THEORY OF IMAGES
i

Image theory, also known as the reflection principle, is a well-

known tool of engineering. The principle of reflection shall be used

in the formulating of a method for determining dispersion and

diffusion coefficients.

3.1. Theory

In many engineering problems for which a differential equation may

be written, the imposition of essential boundary conditions may make it

difficult or impossible to obtain an analytic solution of the equation.

If an analytic solution to the unbounded equation is known it may be

possible to recognize symmetries in the intractable problem and to

formulate unbounded problems which have as a solution the,solution to the

intractable problem.

3.3. Application

A well established application of image theory is in the field of

groundwater engineering. Here solutions to well flow problems are often

limited by finite physical boundaries. For example, the differential

equation governing steady radial flow to a discharging well in an unconfined

isotropic homogeneous aquifer may be written (34) as

Q = -27T r Kh ^ (17)

where Q = well flow rate

K = permeability of the aquifer

h = head above bedrock

2
 + 2 , radial distance from well

-J
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This first order differential equation is readily solved by separation

of variables for the boundary conditions h = h (head at the well) at

r = r {well radius) and h = h (initial head) at r = r (radial extentw p. o
of the final depression cone). Integration of Equation 17 yields, ''

h 2 . h 2 = 4 ln (r /r) (18)o w -rrK * o w' - v '

Now consider,a case where the depression cone is interrupted by a perennial

stream as shown in Figure 8.. Obviously the above solution is no longer

valid. Furthermore the imposition of this new boundary condition

creates difficulty in obtaining an analytical solution. However a

simplified solution may be obtained by applying the method of images.

In this case the image will be an imaginary recharge well introduced in

such a way as to create, mathematically, a hydraulic flow system which

will be equivalent to the known physical boundary of .the actual flow system.

Thus the aquifer of finite extent is transformed into one of infinite

extent so that the known radial flow solution can be applied. The image

well, Figure 8(b), is placed directly opposite and at the same distance

from the stream as the real well. The image well operates simultaneously-

and at the same recharge rate as the real well. The net result of buildup

from the image recharge well and drawdown from the real well is then

combined graphically.

The final head may be predicted graphically by imposing the individual

head profiles for each well as calculated by Equation 18. The resultant

head at each point is the graphical sum. An even easier method is to

write simply the equation which is the algebraic sum of the two

governi ng equations.

^ - Ores = <h* - ^v + ^ - <19>
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Figure 8. Sectional Views of A Discharging Well Near A Perennial
Stream and Equivalent Hydraulic System in An Aquifer of
Infinite Aerial Extent
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where h - h is the drawdown at any point (x ,y) . The coordinate x-axis

is the line perpendicular to . the 's t ream iioing through the real wel l and
•4

the y-axis runs through the center of the stream.

Another common boundary problem in well flow calculations is that of

an impermeable vertical boundary near a pumping well. This problem and

its hydraulic equivalent are shown in Figure 9. For this case the boundary

is replaced by an imaginary discharge well placed equidistant from the

boundary and in the opposite direction from the real well. Thus the wells

offset one another yielding no flow across the boundary. This is of

course the desired condition.

As a further example of image theory, consider the emission of gases

or aerosols from a stack as shown in Figure 10. This particular example

is very closely related to the receiving stream and waste outfall system

solution to be presented by this writer. The differential equation

governing the mass transfer of air-borne materials emitted from a point

source in an advective velocity field is similar to that given for the

aqueous system, with the exception that longitudinal dispersion is neglected

in view of the magnitude of the advective term. An analytical solution

could be obtained for the steady-state problem were it not for the boundary

condition imposed by the ground surface. Obviously the solution requires

that no pollutant be allowed to pass through this boundary. The problem,

however, can be solved by replacing the boundary with an image stack

discharging at the same rate as the real stack. The imaginary stack is

located equidistant .but in the opposite direction from the boundary.

A solution then is obtained simply by algebraically summing the resultant
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Figure 9. Sectional View of a Discharging Well Near An Impermeable
Boundary and Equivalent Hydraulic System in An Aquifer
of Infinite Aerial Extent.
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Figure 10. Sectional View of A Discharging Stack and An Image Stack Which
Together Replace the Ground Surface Boundary.
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concentrations due to each of these sources. The solution is given

by Turner (10) as

1 ,y >2 1 /z -Hv 2 l/z-%2

- / ^ Q ~ 2 V,' ' 2(~ ' , " P~ J

c (x.y,3) - 2^ Q
w

q y e ye z +e z
y z

where o and a are the standard deviations of the plume in the lateral
y z

and vertical directions. The standard deviations are related directly

to the turbulent diffusion coefficient, normally designated K in atmos-

pheric dispersion investigations, by o = >£kt. The concentration of sus-

pended material is assumed to have a Gaussian distribution in both horizontal

and vertial directions. Turbulent dispersion in the longitudinal direction

Is neglected in view of the overwhelming effect of the mean wind speed, U.

This assumption is quite logical in view of the previous discussion (Section

2.6). Adrian (35) has proposed a similar solution for the atmospheric

dispersion problem involving both an upper (thermal inversion) boundary

and lower (ground surface) boundary.

The reflection principle is also used in the solution of certain

hydrodynamic problems. Again boundaries are accounted for by selectively

placed images which allow one to work with known'unbounded analytical

solutions. An elementary example of this use is that of a jet flowing

against a flat plate. In two dimensions the jet may be represented by

a singular source and the plate by a straight line. In polar coordinates

the radial velocity for unbounded source flow of strength x = 2-nrq ,

is
3ii>or =H
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where \^ is the stream function. If the polar coordinate origin is picked

to be coincidental with the source and $ = 0 to be the horizontal stream

function then the solution is readily found (36) to be

, _ xe
* fir . .

Unfortunately the solution for the actual bounded case is considerably

more difficult with the imposition of $ = 0 and f^ - 0 for the plate.
oTl

However by applying an imaginary external sigularity equidistant from the

plate a solution is easily obtained. This solution is simply the super-

position of the real and imaginary sources in an unbounded infinite

field (36). It should be noted that continuity requires there must like-

wise be imposed real and imaginary sources at + •« and - <», although this

is not significant in the solution to this problem.

There are many other areas where image theory is applied. Various

electrical, acoustic and heat transfer problems are often solved using

reflection principles. In many cases the problems to be solved are con-

siderably more complex and their image theory solutions may involve

numerous imaginary systems.
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CHAPTER 4 COMBINED FORMULATION

Having considered the theoretical mechanics of mixing and advection

in Chapter 2 and the method of images in chapter 3, a mathematical

solution to the two and three-dimensional mixing-advective equation is

now presented. As already discussed, the one-dimensional problem is

readily solved analytically due to the infinite nature of the longitudinal

boundary. That is, the stream may be considered to be unbounded in the

upstream and downstream direction. However, in the two- and three-

dimensional mixing cases, finite boundaries do exist as represented by the

surface, bottom, and banks of a natural stream. This situation, with

finite boundary conditions in the vertical and lateral directions, has

left the three-dimensional flow equation without an analytic solution.

In this section is proposed a solution for these bounded flow cases by

applying the principles of image theory. The problem will first be

considered graphically and then mathematically.

4.1. Graphical Description -

The method of images in solving the boundary value problem of three--

dimensional mixing-advective flow is presented graphically in Figure 4.1.

The plume boundaries emanating from the real point source outfall may be

defined arbitrarily. For instance the plume surface might be defined as

the connection of points whose concentration is one standard deviation

away from the maximum of the normal concentration profile. In Figure ll(a)

the first image source is placed in such a manner as to replace the real

effect of the right bank boundary. The boundary effect is of course one
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Figure 11. Aerial View of Stream Illustrating the Progressive Superposition
of Imaginary Plumes to Accomplish the Image Method of Solution.
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of reflection (assuming no adsorption onto the boundary). The net effect

of replacing the boundary with an imaginary source is precisely the same.

The total mass to be found inside of the real boundaries will be consistent

with the amount actually being released. Now the effect of the real plume

must also be accounted for at the left bank boundary. This situation is

accounted for in Figure ll(b) by placing an image source, !„, equidistant

from the real source about the left bank boundary. However, the solution

is still incomplete as the 1-, plume soon intersects the left bank, necessi-

tating the introduction of 1. as shown in Figure ll(c). Similarly, the

12 plume intersecting the right bank must be reflected back into the stream

by introducing the imaginary source 1«. In a like manner, when the plumes

of K and 1, intersect the distant boundaries, two more images 15 and lg

will be required. Theoretically, an infinite number of images will ultimately

be required in order to satisfy the condition of mass conservation. In

practice, however, one will note that the effect of images spaced at

increasing distances from the stream will be of less and less importance.

This is especially true immediately below the outfall and is shown graphically

by noting that points just downstream of the outfall are within only

the real and 1, plume. Points further downstream are affected by the real

plus only four or five image plumes. As one proceeds.downstream more

images will be required. It is still evident however that an infinite

number of images will not be required.

The discussion thus far has considered only a method for coping with

the horizontal boundaries of a stream. The two vertical stream boundaries,
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the air-water interface and the bottom of stream, present a similar problem

and it Is proposed here that these boundaries may be treated in a similar

manner. Figure 12 illustrates how the surface and bottom boundaries are

accounted for graphically. Again, mass is conserved by distributing

imaginary sources spaced appropriately about the surface and bottom stream

boundaries. One will note here that since the magnitude of stream depth

is considerably less than stream width several more images are required

in order to satisfy mass conservation even at points very near the real

outfall. The result of this relatively tight spacing is a rapidly

developed uniform concentration profile in the vertical direction. This

is precisely the result expected according to the earlier discussion of

turbulent mixing, Section 2.1. Thus this method of treating the boundary

conditions is consistent with multidimensional mixing concepts.

4.2. Mathematical Description

The differential equation governing three-dimensional mixing in a

uniform flow field may be written as

!£+ uf|« E^+ D V ^4 + D,^+ Mx-x1) s(y-y ' ) fi(z-z') 6(t- t ) (21)
9t 8X 3X^ y 3y^ 23z^

The symbol E denotes the coefficient of longitudinal dispersion which was

defined earlier as the net effect of the random longitudinal diffusion and

the non-random longitudinal dispersion process. The symbols D and D are
•J

coefficients of lateral and vertical turbulent diffusion and are considered

to be random processes. The Dirac 'delta function, 5, relates the instan-

taneous input of mass, M, with the time of mass release^ T, relative to

a fixed time, and the coordinate locations at the point of mass release

*'» y'» z'. The following boundary conditions must be satisfied in
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Figure 12. Cross-sectional View of A Stream Illustrating the Progressive
Superposition of Imaginary Plumes to Accomplish the Image Method of
Solution.
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obtaining an analytical solution to Equation 21 describing three-

dimensional mixing and advective transport of the system.

I.C. c (x,y,z,o) = 0 for - «>< x <+ «>, o <_ y <_ w and o ^ z ^ D

B.C. = 0 for y = 0, t >0 and for y = w, t >0
ay

— = 0 for z - 0, t >0 and for z = D, t >0

c •> 0 as x-> +. °°

An analytic solution has not as yet been obtained which will satisfy

Equation 21 with the above boundary conditions.

The unsteady-state .solution to Equation 21 for the case of infinite

lateral, vertical, and longitudinal boundaries is adapted from the solution

given by Carslaw (15) as

H T (x -x ' -U t ) 2 (y-y ' )2 ( z - z 1 ) 2

C = / 1/3 3 6Xp-?t { -1 + -D— + -D—}

r o / (trn n \ ' / ^ 4 . i " Z Z{^/7r(LU u ) t}

For this equation c is the time average concentration resulting at any x,,

y, z, point from the release of a mass, M, at time t = 0 at the rectangular

coordinate point (x1 , y1, z 1 ) . If the exact location of the mass injection

is picked as the origin then the equation may be simplified to

- M i (x-Ut)2 y2 Z2

c = r exp • ̂  { ^ — + D~ + D- }
J{2/rr(ED D z ) t )
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The above equation then predicts the concentration at any location and time

resulting from an instantaneous injection of mass into an unbounded

advective turbulent field. Nov.' to obtain a solution for the actual finite

boundary value problem, a series of imaginary outfalls will be mathematically

superimposed upon the real outfall. The superposition is analogous to the

graphical description given in "Section 4.1. Mathematically, the solution

is obtained by evaluating Equation 21 for a finite number of imaginary

sources and summing up the resultant concentrations due to each individual

outfall. The number of imaginary sources needed will be dictated by the

accuracy desired since each additional image source will contribute less

mass than the previous one.

The computations to be made will take the form shown below.

Figure 13 illustrates the symbols used for the hydraulic stream parameters

with the actual outfall located at the origin.

Concentration due to real outfall

? 9
(x-utr y

CR = - 3 - exp - 4t ] -E— + D" + 0
3

Concentrations due to vertical image outfalls (z axis)

2 2 2
M ! (x-utr y (z-2d)'

. D * z

y z

M } Cx-Ut)2 y2 (Z-2d + 2D)2

(2/̂ F")3 /ED̂ F-

y2 (Z + 2D)2
C
v3 3 ™r 4t L E

y z
etc.
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Figure 13. Drawing of A Rectangular Stream Channel Showing Symbols
Used to Identify Physical Parameters.
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Concentrations due to horizontal (y axis) image outfalls

M , (x-Ut)2 (y-Zw)2 Z2
C = - 5 - exp - ̂ 1 -nr- + -r— + P-

1

M , (x-Ut)2 (y-2W + 2w)2 Z2

4t -T— - D
h

CH- = - : - exp - 4t3

(x -Ut ) 2 (y+2W) 2 Z2

etc.

Total concentration at any point

n m

ET = CR + z ER + t cv
i=l 1 1=1 ]

Thus the resultant concentration at any point in the stream following

an instantaneous release of mass may be calculated. The symbols used

(with their dimensions) are defined as follows:

M = mass of material released. (M)
2

E = coefficient of longitudinal dispersion. (L /T)
2D

v*
 Dz ~ coefficients of lateral and vertical diffusion. (L /T)

•/

t = time following release. (T)

x, y, z = cartesian coordinate location of point where concentration

is to be predicted. (L, L, L)
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U = average cross-sectional stream velocity for reach. (L/T)

d = depth of outfal l below stream surface. (L)

w = width from left bank of outfall point. (L)

D = average stream depth. (L)

W = average stream width. (L)
. 3

C = mass concentration in stream at (x ,y ,z) due to real outfall. (M/L )
R •

C = mass concentration in stream at (x,y,z,t) due to first vertical

2(z axis) image outfall. (M/L )

C,, = mass concentration in stream at (x,y,z,t) due to first
1 3horizontal (y axis) image. (M/L )

3
CT = mass concentration at (x,y,z,t) due to all image sources. (M/L )

4.3. Significance of Vertical Mixing

Having presented a method for solving the three-dimensional problem,

it is now appropriate to evaluate the need for this tedious approach.

The three dimensional solution is useful only in the three-dimensional

mixing zone. If this zone is resolved to be relatively small for typical .

stream and estuary conditions, then the need for maintaining the zone

in the analysis may be justifiably dismissed. The necessity of continuing

to include this zone will be demonstrated only if the magnitude of

the three dimensional mixing length is significant.

Using the image method in conjunction with various typical stream

parameters, the extent of the three-dimensional mixing length can be

examined. It should be recalled here that the lower boundary of this

zone is designated by the appearance of vertical concentration uniformity
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across this lateral boundary. For a given set of stream parameters,

vertical concentration profiles may be calculated at any position

downstream following an instantaneous release of mass. By adopting

a Lagrangian-viewpoint, that is by following the center of mass

downstream, the extent of vertical mixing is seen under peak concentration

conditions. The criteria for uniformity of mixing may.be established

at any level desired.

The results of a typical case are given in Figure 14. These curves

depict the theoretical concentration profiles which would occur from

a Lagrangian viewpoint due to a mass release of 50 grams at midstream

and mid-depth. The hypothetical stream had a width of 200 feet, depth

of 18 feet, mean velocity of 1 ft/sec., and it was assumed that D =
A

20 = E = 5 ft /sec. This figure shows the very rapid convergence of

the vertical profiles as the mass moves downstream. All points on the

profile converge to within 6% in a distance of 30 feet downstream of

the mass injection.

The vertical mixing length is directly related (theoretically) to

stream depth. This parameter is also a function of stream velocity,

width, channel roughness, etc. Since the depth of a natural stream is

consistently an order gf magnitude less than the width, it follows that

the vertical mixing.length will be of far less significance than the

lateral mixing length. This then suggests that the three-dimensional

mixing length can be neglected in all but the most sensitive studies

where vertical mixing is a critical factor. Such a situation might occur

under an estuarine condition where stratification was non-limiting or



Figure 14. Vertical Concentration Profiles Predicted for Instantaneous Mass Release
Indicating Rapid Convergence Downstream.
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insignificant. However, estuaries are usually stratified due to saline

or thermal differences between stream and ocean.

With the above discussion in mind, the complex three-dimensional

mixing-advection model presented may be simplified to a more negotiable,

two-dimensional form by assuming that the effect of vertical mixing may

be neglected in the more general three dimensional case.

4.4. Two-dimensional Mixing-Advection Method

By neglecting vertical diffusion the differential equation

governing the mass transport of material from an outfall becomes

The solution for an instantaneous release of mass into the unbounded

system is (15)

M (x-Ut)2 y2

4Trdt/ED y
Y y

where d is the average stream depth. Again, the image method is used

to satisfy the finite extent of the lateral boundaries. The series

solution will then take the form

n
CT (x,y,t) = CR + £ CH (26)

1=1 i

The number of horizontal image outfalls will be determined by the

accuracy desired. The horizontal image spacing is the same as that

shown in Figure 11 .
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4.4.1 . Application

The primary purpose for formulating the two-dimensional mixing-

advection model is to use the model for evaluating specific values of

the longitudinal dispersion and lateral diffusion coefficients. The

means by which this can be accomplished is to create a situation where

all parameters of Equation 22 are known except E and D . Prospects
•J

for solution of a problem of one equation and two unknowns initially

look bleak; however, one property of this equation will allow another

relationship to be established between D and E. That is, for a given
•J

value of E only one possibility for D exists. With this information
*J

E and D may be determined by trial and error substitution into
J

Equation 26.

The longitudinal dispersion coefficient and the lateral diffusion

coefficient can be evaluated by the image method for a specific stream

reach by means of a tracer injection. A known quantity of mass is

released and time-concentration profiles are measured at various downstream

locations. Readily obtainable parameters including the average stream

depth, width, and velocity must also be observed. for the test. Ideally,

a reach would be selected which is relatively straight with steep banks.

For an instantaneous mass release at mid-stream, the maximum con-

cnetration found on any cross-section downstream would occur at y = 0

and x = Ut. Hence the total image series solution takes the form

n

(27)
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Now for a given value of E, a value of D may be sought by trial and
J

error substitution into Equation 27. A family of E with corresponding

values of D may thus be generated. With this information the time-
J

concentration profile observed in a test may be fitted by trying various

values of E and the corresponding values of D in Equation 27. Best

fit values of E and D are thus obtained when the theoretical time-

concentration profile reproduces the observed time-concentration profile

within a given tolerance.

The mathematical calculations required in applying this method

are far too. extensive to be treated manually. The calculations are,

however, extremely, well-suited to electronic digital computation. In

fact, one might speculate that the image method of solution has likely

been recognized by earlier investigators but dismissed due to the

extensive computations needed. There is no question that the image

method is of little value without the digital computer.

4.4.2. Data Analysis

The method of solution of Equation 26 for the bounded two-dimensional

mixing-advection problem does not allow direct calculation of E.

Furthermore, experimental error is introduced in several ways when the\
theoretical method is applied in the field. In searching for a value

for E by trial and error one must expect that the E obtained will be

the result of a best fit analysis. The most common procedure for

obtaining a best fit is to minimize the sum of the squared differences

between C (predicted or theoretical concentration) and C (observed

concentration). Two methods for accomplishing the best fit analysis
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are discussed in the sections to follow.

GRADIENT METHOD

The gradient method is a form of least squares analysis in which

values of two independent variables occurring in a single equation

may be obtained by minimizing the difference between a set of predicted

and observed.values of a dependent variable. The observed value set

as obtained experimentally, or in this case from field data, while the

predicted value set is calculated for various assigned values of the

unknown variables. The procedure requires repetitive calculations and

is well adapted for computer analysis. The method proceeds as follows:

1. Starting from initial values of E and D new values are
*/

calculated by increasing and decreasing each value by an

incremental amount resulting in a three by three array of E

arid D values. Incremental values need not be the same
J

magnitude for each variable.

2. The sums of squared differences (SSD) between the observed

and the predicted concentration values are calculated for

each of the nine pairs of E and D values.
*/

3. SSD values for each network point out are compared with the

central point of the array and the smallest SSD is determined.

This point is then established as the central point of a new

array of E and D values.
J
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4. Steps 2 and 3 are then repeated until the central point

is determined to be the data pair yielding the minimum

SSD and the procedure is terminated. This final data pair

is thus selected as the best fit value of E and D for the
*/

experimental data. Smaller increments may be assigned to

E and D and the procedure may be repeated starting with

Step 1 to obtain more accurate values.

NEWTON- RAP HSON ANALYSIS

An alternate method for selecting best fit values for E and D is
J

themore sophisticated Newton-Raphson analysis. This method is also a

least squares minimization technique, however this method allows a

much more direct and thus more rapid analysis. For the one-dimensional

mixing problem where only a value of E is sought, the procedure is as

follows:

Let G(E) = i (cQ-cp)2

and H(E) - ff - 2 i { <Vcp> ^ }

Now the E value sought is that value for which

3G

This particular value for E is designated E . Figure 15 graphically

illustrates the above mathematical reasoning. In order to find the optimum

value, E , the function H(E) is expanded by the Taylor Series around E

and truncated after the first term.
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G ( E ) = Z ( C 0 - C p ) 2

(0)

H(E)

H ( E ) =

Figure 15. Graphical Description of.the Newton-Raphson Method for
Determining Optimum Dispersion Coefficient E from
Experimental Data in One Dimensional Mixing 2one.
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<E-E0)

Now since H(E ) = 0, an arbitrary initial value of E may be assigned

and the above equation may then be solved algebraically giving a

better approximation for E. Now the procedure is repeated

utilizing the refined approximation of E. Successive improved

approximations continue to be made until sufficient convergence is

obtained. The final value of E, is accepted as the optimum value, E

of the dispersion coefficient.

For the two-dimensional mixing-advection equation the Newton-

Raphson procedure requires several differentiations with respect to

E and D . In general , the two-dimensional series solution may be

written as follows:

.
c ( x , y , t ) = — ̂  - {exp - [

(x-Ut)2 y2

p , , -

• 47Tdt/ElT y

i '

, (x-Ut)2 (y-2w)2

exp - [ - - + - — ]}

*< 4 M . (x-Ut)2

z- i ~—— exp - ~ f-
=l n=l ^

1
4t

y

y
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where the value of k relates the number of image sources desired.

Again W is the stream width and w is lateral distance from either

bank to the point of mass release. An obvious simplification of this

expression may be obtained by specifying that w be fixed at W/2,

i.e. the mass is to be released at mid-channel. This assignment reduces

the solution to:

k 4 , (x-Ut)2 [y+jW(-l)n]2

cn (x,y,t,) = i i: — * - exp - ift < -g— + -p-
P J-° "-1 4,dt /ED" "

J

Now by substituting the following expressions

- M

A2 -^ (x-Ut)2

the equation simplifies to:

h 4 A,
c = s ip

 j=0 H.T.
Then G(E, Dy) will be defined by

G ( E ' V = I, [Eo - « ~

where s = number of data points

The functions f and h are then defined as
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Expanding these functions by the Taylor series yields the following

equations

f (E,Dy) = f (a,B) + || (E-a) + f£- (Dy-B)

h (E, Dy)=h(a,3) +ff (E-a) + f~ (Dy-0)

where a and 8 are optimum values of the dispersion and diffusion

coefficients, E and D . Note that when a and 6 are correctly located

the terms f (a,3) and h (a,3) both equal to zero. The pair of equations

can thus be solved for a and 6 in the following manner. Initial values

for E and D are assigned and the expressions for ~ and -=- are evaluatedy j t a u

at the point (E, D ). The expressions ~ and ~~ are also evaluated
y dL 6Vy

at the point (E, D ). Now the pair of equations are solved simultanteously

for the values of a and e . These values obtained are first

approximations. The function G nay now be evaluated at the points (E, D )
•J

and (a,B) as a measure of the accuracy of the first approximation. Now

letting

E = a

and

D- = 3y
the simultaneous equations may be resolved and a second approximation

of a and 3 obtained. The process is repeated until sufficient

convergence is obtained.
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Although the method appears somewhat straight forward, the

mathematics involved are extremely tedious. Mr, Thomas Sanders,

Doctoral Candidate, Department of Civil Engineering performed the

analysis described above and adapted the method for electronic digital

computation. The program used for the analysis is given in the appendix
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CHAPTER 5 FIELD STUDY

• j
Having proposed a theoretical solution to the two-dimensional

mixing-advection equation, the writer conducted two field tests in

order to determine the dispersion and diffusion coefficients for an

actual' case and to compare the results with published values.

5.1. Procedure

A reach of the Mill River in Northampton, a minor tributary of

the Connecticut River was chosen for the field tests. The reach chosen

was extremely straight longitudinally and trapezoidal in cross-section.

The flat sandy river bottom was banked by rip-rap which had been

placed to stabilize the channel. Admittedly, the test conditions were

most ideal. Three tests were made during May and June, 1970. The

discharge of the river during the tests ranged from 70 to 150 cfs.

The stream width was 50 feet and the depth was 2 1/2 to 3 feet; thus

the average velocities were about 0.7 to 1.0 fps. Figure 18 is a

photograph of the test reach.

The tracer used in the tests was a well-known tracer used in

stream studies (37), Rhodamine B. This organic dye was purchased from

Fisher Scientific Company in powdered form. The dye was dissolved in

a 40% (by weight) solution of glacial acetic acid just prior to each

test run. Approximately 100 grams of dye were used in each test.

The analyses were performed with an Aminco-Bowman Spectrophoto-

fluorometer (Silver Springs, Maryland—Catalog No. 4-8202). This

highly sensitive instrument features a high intensity xenon light

source with two monochromators. The excitation and emission spectra

were scanned for the dye used and results verified those reported in
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the literature (38). An excitation wave length of 546 m y and an

emission wave length of 570 m p were used for all analyses. The

instrument is capable of measuring concentrations down to 10 ppb

(parts per billion) of Rhodamine B dye. Standards were prepared using,

the river water for dilution. Calibration curves were prepared by

plotting log concentration versus log % transmittance for the appropriate

photomultiplier settings.

The first test was run primarily as a reconnaissance survey in

order to identify unforeseen complications. Since the method of

solution presupposes two-dimensional mixing, the dye injection must be

made uniformly in the vertical direction. To accomplish this, the dye

solution was injected into the wake of a person standing in the center

of the stream. The idea was to create excessive but short-lived

turbulence to accomplish immediate vertical mixing. Unfortunately,

the dye remained for a short period of time in the eddies created

behind the stationary figure producing a visible tail as the dye mass

proceeded downstream. In the second test, the problem was over-

come by releasing the dye solution from a coffee can held below the

surface. The cylindrical can was turned into the flow and the top and

bottom plastic covers were quickly removed.

Two sampling stations were located downstream of the injection point,

one at the center of the stream and another at a distance of seven feet

from the right bank. Time-concentration samples were collected at these

points which were located 200 feet downstream of the tracer injection
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point for the first test and 400 feet downstream for the second

test. Samples were collected in 100 ml glass bottles (bacterial dilution

bottles) by moving the bottles rapidly up and down as they filled. The

intent of this collection method was to obtain a vertically integrated

sample.

The river was gaged by standard discharge measurement procedures

(39) for the flows encountered. The stage height was measured by steel

tape and plumb-bob from a reference point located on top of a concrete

rai l ing post on the upstream side of the State Highway 10 bridge just

downstream of the test reach. Al though the U. S. Geological Survey

main ta ins a gaging station less than two river miles upstream of the

test reach, the data ava i l ab le there was deemed unacceptable due main ly

to an impoundment located between the two sites.

The procedure for each f ie ld test consists of the fol lowing steps:

1. A measured mass of powdered Rhodamine B (100 to 120 grams) is

dissolved in a 40% by weight so lu t ion of acetic acid.

2. Standards are prepared from the above stock solution using river

water for make-up.

3. All sample bottles to be used in the test are washed and labeled,

4. The required apparatus are brought to the. test reach and the

river stage is recorded.

5. The desired sampl ing points and the tracer injection points

are identif ied by measuring the appropriate distances with a 100 foot

steel tape. Each point is marked by dr iv ing f ive foot steel poles into

the river bottom.
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6. The tracer is injected.

7. Vertically integrated samples are collected at the specified

times. A plastic bucket is floated near the observation point to store

the sample bottles during collection.

8. The samples and standards are removed directly to the laboratory

for analysis. Standard solutions are analyzed and calibration curves

prepared.

9. The samples are analyzed and the standards are re-run to determine

whether significant drift has occurred in the instrument. (If drift

is significant the samples must be analyzed again.)

10. The sample concentrations are determined from the calibration

curves.

11. The data is read into the computer program and the resulting

coefficients are determined.

5.2. Results

The results of the two field tests are reported in Tables I and II.

The stream width reported is that of the approximate mean width of the

trapezoidal channel. The stream depth is given as the average depth

encountered in the cross-section. The stream velocity reported was

determined by time of travel for the peak concentration recorded at

the mid-stream sampling point. The data were analyzed by both the

Gradient and the Newton-Raphson methods as outlined in Section 4.4.2.

The FORTRAN IV programs utilized are presented in Appendix A.
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Table I. Results of Field Test Number One

Station A Station B

Time
(sec)

60
120
150
180
210
240
270
300

X

(feet)

200
200
200
200
200
200
200
200

V
(feet)

0
0
0
0
0
0
0
0

c
(ppb)

0
1250
1600
90
20
10
10
0

y
(feet)

15
15
15
15
15
15
15
15

c
(PPb)

0
0

220
0
0
0
0
0

Date: May 27, 1970

Location: Mill River at Northampton, 500 ft above State Highway 10
bridge.

Variables:

Avg. stream velocity, U = 1.3 ft/sec

Mass of dye injected, M = 200 grams

Width of stream, W = 44 f t

Lateral injection point, w - 22 ft

Average stream depth, d = 3.3 ft

Results:

Longitudinal dispersion coefficient, E = 5.2 ft /sec
2Lateral diffusion coefficient, D = 0.5 ft /sec

•J



Figure 16. Results of Field Test 1.
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Table II. Results of Field Test Number Two

Station B

Time
(sec)

180
210
240
255
270
285
300
315
330
345
360
390
420
480
540
600
720

X

(feet)

400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400

ouci i lui

y
(feet)

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

i n
c
(ppb)

0
0
12
10
450
920
850
440
280
170
95
30
0
0
0
0
0

y
(feet)

15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

c
(PPb)

0
0
0
0
0

270
185
50
160
210
275
180
100
30
0
12
0

Date: June 4, 1970

Location: Mill River at Northampton, 500 ft above State Highway 10
bridge

Variables:

Results:

Avg. stream velocity, V = 1.4 ft/sec

Mass of dye injected, M = 112 grams

Width of stream, W = 44 ft

Lateral injection point, w = 22 ft

Average stream depth, d = 3.0 ft

2
Longitudinal dispersion coefficient, E = 4.8 ft /sec

2
Lateral diffusion coefficient, D = 0.2 ft /sec

J



Figure 17. Results of Field Test 2.
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5.3. Discussion

The values obtained for the lateral diffusion and the longitudinal

dispersion coefficients are considerably smaller than values reported

in the literature for estuaries; however, they closely approximate the

values suggested by Hoi ley (8) for streams. In observing the dye mass

slug as it traveled downstream one could not help remark how slowly

the mass did spread. The dye mass seemed to move at least 200 feet

before reaching the lateral boundaries. When the mass did reach the

lateral boundaries, the dye appeared to accumulate near the boundaries.

This caused the dye mass to form into a horseshoe pattern, as the mass

continued to mix; however, the horseshoe pattern evolved more into

an elliptical pattern with truncation at the stream banks.

The methods used for the dye dispersion studies were quite straight

. , forward and proceeded smoothly from start to finish.

The results of the experimental tests indicate that the dispersion

and diffusion coefficients for streams are much lower than the values

frequently quoted for estuaries. Nevertheless, the results obtained

here are considered to be consistent with the mixing theory incorporated

within this paper. The experimental procedure ;for determining values

for D and E by the image method is far less consumptive of time and

resources than the other techniques described. As a result there are

fewer problems which might arise during the test. Other procedures

require excessive manpower and materials (gallons of dye are often needed)

The complications are many and often casual oversights or mistakes can

cause the whole survey to fail, bringing on unnecessary and rather

significant expense.



FIGURE 18. Photograph of Test Stream - Mill River at Northampton
above State Highway 10 Bridge.
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Although the use of a high speed digital computer is prerequisite

to the use of the method presented in this paper, the cost of this

facility is minimal when compared with the cost of manpower needed for

the other methods.
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CHAPTER 6 SUMMARY AND CONCLUSIONS

In the past decade significant effort has been devoted toward

developing mathematical models of stream and estuary water quality.

Such models are fundamental to economic wastewater treatment plant

design in order to meet water quality standards. A water quality model

must account for all significant biological, chemical and physical

mechanisms which affect the distribution of the parameter being modeled.

This paper has dealt only with the physical processes affecting

pollutant transport. The physical model normally serves as the foundation

upon which the reactive properties of a particular parameter are

superimposed. The physical aspects must then be well formulated if

the model is to be successful.

. The concept of plug flow is completely unacceptable for estuarine

systems and is often unrealistic for streams. In turbulent stream flow

mixing of dissolved particles occurs by molecular diffusion, turbulent

diffusion and by dispersion. The term "diffusion" is applied to random

motion. Molecular diffusion is an extremely slow mixing process

caused by Brownian molecular motion. Turbulent diffusion is caused by

random time-velocity fluctuations and thus causes equal but somewhat

inefficient.mixing in all directions. Dispersion, the most efficient

mixing process, is primarily a fixed process occurring as a direct

result of the spatial velocity distribution in a stream. Mathematically,

dispersion incorporates longitudinal diffusion.

Mixing zones are established downstream of a point outfall. The

three-dimensional mixing zone extends downstream from an outfall to a

point where all vertical concentration gradients disappear. This zone
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or reach is typically very short and for practical purposes may be

neglected in most stream models. In the two-dimensional mixing zone

concentration gradients exist in the longitudinal and lateral directions

only. A second order partial differential equation describing mass

transport in this zone has been derived, but due to the finite extent

of the lateral stream boundaries, an analytic solution has not been

found. However, for an infinite flow field the equation is readily

solved. It has been proposed herein that the physical boundaries can

be replaced with an equivalent hydraulic system utilizing classical

image theory, also known as the principle of reflection. The solution

to such a system is obtained by the superposition of an infinite series

of image outfalls. For practical purposes, however, only a small number

of imaginary outfalls need be considered as the effect of image sources

diminishes with distance away from the real system.

The equation governing one-dimensional mixing and advection is

readily solved analytically. Since coefficients of dispersion cannot

be measured directly,the one-dimensional transport solution is utilized

in conjunction with tracer injections in order to calculate values for

the dispersion coefficient. Various methods are available to accomplish

this, however all are expensive and time consuming in their applications,

Furthermore, the result is a single value which must then serve as the

average for several hydraulically heterogeneous river miles. Specific

values for short and relatively homogeneous reaches cannot be obtained

without costly and tedious survey methods.
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One of the most prominent applications of the solution to the two-

dimensional mixing equation proposed here is a new, relatively simple

and much less costly method of obtaining longitudinal dispersion

coefficient values. Furthermore, the method allows one to obtain

specific values of the lateral diffusion coefficient for short reaches.

Very little previous work has been aimed at evaluating this coefficient

in natural.streams.

The method proposed of evaluating E and D was utilized for a

local stream. The results obtained suggest that coefficients of

dispersion in natural streams are probably far smaller than those often

reported in contemporary literature.

The series solution presented for the two-dimensional mixing

equation requires excessive mathematical operations in predicting

spatial and temporal.concentration distributions. Such calculations, are,

however, well suited to electronic digital computation. A useful

FORTRAN IV program has been included in the Appendix for applying the

image solution to obtain values for dispersion and lateral diffusion

coefficients from experimental field data utilizing the procedures

outlined in Section 4.4.2 of this paper.

Aside from its application in turbulent mixing studies, the two-

dimensional transport solution will find relevance in more accurately

predicting the effect of nearby outfalls on industrial and water

supply intakes, bathing beaches, and on the natural stream ecology.

The two-dimensional solution allows direct prediction of any conservative
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pollutant concentration in the lateral and longitudinal plane of a

stream due to a nearby outfall. The reactive properties of non-

conservative pollutants may be applied to the transport solution to

obtain similar concentration predictions.

The three-dimensional mixing-advection equation may also be solved

by the image method; however, for relatively shallow streams vertical

mixing occurs quite rapidly and the use of three-dimensional mixing is

of little value. For deep, slowly moving streams, the three-dimensional

solution will be useful in predicting pollutant concentrations at any

lateral, vertical and longitudinal point due to nearby wastewater out-

falls. This suggests application of the method to estuarine systems.

In deep streams and relatively deep estuaries, density stratification

is common. The image solution might find useful application in such

problems where an exchange mechanism operating between the density zones

could be mathematically incorporated into the three-dimensional image

solution.

In conclusion, it is hoped that the practical solution given to

the natural stream mixing equation will be evaluated for its merit by

contemporary investigators. With the solution given, specific concen-

tration predictions at any location near outfalls should allow for more

durable and efficient wastewater treatment plant design and outfall

location. Finally, the method given for determining E presents a less

costly, localized and more direct procedure for evaluating this elusive

parameter.
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A 1 FORTRAN IV PROGRAM UTILIZING GRADIENT METHOD TO DETER-
MINE LONGITUDINAL DISPERSION AND LATERAL DIFFUSION
COEFFICIENTS FROM FIELD TEST DATA.

10 PROGRAM DAVE4
20 DIMENSION C<50)>TC50>>Y(50>*EQC50)*AE<5*5>»DC5*5>>SSDC5*5)
25 Ml=34
30 RKAD>
40 READj
50 READ*(Y(MMM)*MMM=1*M1)
51 DO 55 MMM=1*M1
52 T(MMM)=T(MMM)*60-0
55 CONTINUE
60 X=400^0
70 AM=112-"6*10.0**6.0/28*31
80 U=l.4
90 SV=44.0
100 Dl=3»0
110 OW=22-0
12.0 SAE=4.763004590 $ SD=0- 2347307837
130 SX=0-1
135 DO 225 MM=1*3
136 DO 225 NN=1>3
137 ANNN=NN
138 AMM=MM
140 AF,(MM»NN) = SAE-CSX*CAMM-a-0) )
145 D(MM,MN)=SD+CSX*CANNN-2.0>>
150 SSDCMM^NN)=0.0
155 DO 220 MMM=1*M1
156 EQCMMM)=0.0
160 DO SOS M=Q>5
170 DO 205 N=l>4
IPO A=AM/CD1*4-0*3-1416*TCMMM))
190 AA=-(1.0/(4.0*TCMMM)))*(X~U*T(MMM))**S
195 AAAM=M
196 ANM=C-1 >**N.+ 1
197 AAAN=N
SOO AAA=(-0-25/CT(MMM)> >*CYCMMM>+g.0*AAAM*SW*<2•0)**0•5*51NFC
201CC2-0+AAAN-1-0)*3.1416/4-0)-OW*ANN)**2
202 EQCM^M)=EQ(MMM)-KA/CAE(MW*NN)*DCMMjNN»**
203CECMM*NN)+AAA/D(MM*NN)))
205 CONTINUE
210 SSDCMM^NN)=SSDCMM*NN)+CCtMMM)-EQ(MMM)>**2
220 CONTINUE
225 CONTINUE
230 MS=0
240 =SSD(2*2)
245 PRINT>C
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250 DO 290 M M = 1 > 3
260 DO 290 N N = 1 > 3
2 7 0 I F < S - S S D ( M M * M N » 2 9 0 j 3 9 0 * 2 f l O
2 R O S = S S D < M M * N N )
281 S A E = A E ( M M j N N ) S S D = D < M M » N N >
285 M S = M S + 1
290 C O N T I N U E
310 IF C M S ) 3 5 0 * 3 5 0 * 3 2 0
315 P R I N T S
320 GO T 13(1
350 P R l N T
355 F.ND
360 E N D P R O G

DATA INPUT
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A 2 FORTRAN TV PROGRAM UTILIZING NEWTON-RAPHSON MKTHOD
TO DETERMINE LONGITUDINAL DISPERSION AND LATERAL
DIFFUSION COEFFICIENTS FROM FIELD TEST DATA.

10 PROGRAM DAVF3
00 DIMENSION C(50>* TC505* YCSO)
95 M! =8 '
30 READ> <(XWtfM)*MMM-l *M1 )
40 READ* CiTCMMM),MMM=l jMl >
50 READ* (Y<MMM> *MMM=1 jMl >
5! DO 55 ,MMM= l,Ml
52 TCMMM)«TCMMM)*60.0
55 CONTINUE
60 X=9.00-0
70 AM=200.0*10.0**6«0/28*31
PO U=l»3
90 SW=44-0
100
110
ISO
193
194
195
130
131
139
133
134
135
136
137
138
139
140
149

1 44
145
146
148
149
160
170

Di = 3« 3
OW=22-0
AE=5*OS9 f D=0.
SUMF1..=0
SUMH3-0
DO 49.0
SUM 1=0*
SUM2=0*
SUM 5=0'
SUM6=0-
SUM 7=0 •
SUM 8=0*
SUM9=0*
SUM10=0
SUM1 1=0
SUM19=0
SUM13=0
SUM 15 = 0

SUM 17 = 0
SUM 18 = 0
SUM 19=0

-0 $ SUM
-0
MMM=1 j M 1
0
0
0
0
0
0
0
-0
-0
-0
• 0

•° .
•0
• 0
-0

SUM 9, 1=0-0
SUM23=0
DO 490
DO 420

• 0
- - ~ U •* O

N=1^4
180 A=AM/(P1*4»0*3*
190
195
196
197
200

AA=-( 1 -
6AAM=M
ANN=C-1
AAAN=N
<iAA=(-0

0/(4-0*T

)**N+1

•PS/ CTCM

5^g " '
FR=O-O s suMF3=o*o * SUMHI=O-O s suMH2=o-o

C X-

) +2 -0*AAAM*SW*< 2 *0 )**0- 5* SI MFC
P01CC9-0*AAAN-1 .0 >*3. 1 4 1 6/4 .p ) -OW*ANN)**g
910 P = EXFFCAA/AF,-»-AAA/D)
9SO SUMI=SUM1 +p*CA*AA/CAE**g.5*D**.5>+0-5*A/CAE:**I *5*D***5) >
930 SUM2=SUMP+B*(A/(AE**0.5*D**0«5> 5
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240 "SUM5=SUM5-F*< 0 « 5 * A * A A / ( A E * * 3 * 5 * D * * 0 . 5 > + 0 « 7 5 * A / < AE**8.5

250 SUM6=SUM6-n*< A * A A * * 2 / < AE**4 • 5*D**0» 5 )+2 • 5*A*AA/
2 5 1 C C A E * * 3 . 5 * P * * 0 - 5 ) >
260 S U M 7 = S U M 7 - r ? * ( A * A A / ( A E * t 2 . 5 * D + * 0 . 5 ) + 0 - 5 * A / ( A E * * l » 5 *
261CP**0.5) )
270 S U M 8 = S U M 8 - P * ( 0- 5 * A + A A A / < A E * + 1 - 5 + D**2 - b > +0 • 25 + A/ < AE* * 1 -5
271C*D**1 . 5 ) )
280 S M 9 = S U M 9 - P . * < A * A A * A A A / C A K * * 2 . 5 * D + 2 . 5 > - * - 0 » 5 * A * A A / t AE**2-5*
2 R 1 C D * * 1 -5»
290 S I W 1 0 = S U M 1 0 - B * < 0 * 5 * A * A A A / < A E * * I -5*D**2 - 5 > +0 -25* A/ C AE** 1 -5*
291CD**1 .5) )
300 SUM1 l = S U K ' l 1 - P * C A * A A A / t A E * * 0 - 5 * D * * 2 . 5 ) + 0 . 5 * A / ( AE
301C**0-5*D*+ 1 » 5 ) )
310 S U M l S = S U M 1 2 - B * C A * A A * A A A / ( AE*S • 5*D**2 • 5 ) +0 • 5*A*AAA/C AE** 1 -5*
31 1CD**^.5) )
320 SUM13 = S U M 1 3 - R * < 0 « 5 * A * A A / ( A E * * S » 5 * D * * 1 • 5 ) +0 - S5*A/( AE** 1 .5*
3 2 1 C D + + 1 .5) )

5 - P * C O » 5 * A * A A / < A E * * 2 « 5 * D * * l - 5 ) + 0 » 2 5 * A / C A E
-5) )

350 S U M 1 6 = S U M 1 6 + P * < A * A A A / C A E * * 0 - 5 * D * * 2 . 5 ) + 0 - 5 * A / C A**0-5*D**1 -5)
360 SUM17 = S U M 1 7 - B * C A * A A / ( A E * * 2 . 5 * D * * 0 « 5 ) + 0 . 5*A/(AE*.*1 - 5*D**0«5)
370 S U M 1 8 = S U M 1 8 - P * ( A * A A A * * 2 / ( A E * * 0 » 5 * D * * 4 . 5 ) + 2 - 5 * A * A A A
3 7 1 C / C A E * * 0 . 5 * D * * 3 - 5 ) )
380 SUM19 = S U M 1 9 - P . * < 0 « 5 * A * A A A / < AE**0-5*D**3»5>-»-0«75*A
381 C/( AE**0-5*D**2-5) )
395 S U M 2 1 = S U M P - P * ( 0 - 5 * A * A A A / ( A E * * 0 . 5 * D * * 3 . 5 ) + 0 » 7 5 * A / C A E * * 0 « 5 *

401CAE**0-5*D** 1 -5) )
420 C O M T I N U E
430 S U M F I = S U M F 1 + C ( M M M ) * S U M 1 - S U M 2 * S U M 1
440 S U M H l = S U M H l + C < M M l v n * $ U M 1 6 - S U M 2 * S U M 1 6
450 SUMF2 = SUMF2 + C M M M ) * C SUM5 + SUM6) -C SUM2*C SUMS + SUM6) + SUM 1 *S
4 5 1 C U M 7 )
460 SUMF3= :SUMF3 + C C M M ^ 3 ) * C S U M 8 - ^ S U ! v : 9 ) - C S U M 2 * < S U ^ ! 1 0 + S U ^ : 9 ) + S U M l *
4 6 1 C S U W 1 1 )
470 SUMHS=SUMH2+CCMMM)*CSUM12+SUMI3)-CSUM2*(SUM12+SUM15)+SUM1
471C6*SUM17)
4RO SUMH3=SUMH3+C(MMM)*CSUM18+SUM19)-CSUM8*(SUM18+SUK1 >+SU
481CM16+SUM23)
490 CONTINUE
495 PRINT'SUNFI > SUMF2* SUMF3 > SUMH1 > SUMH2* SUMH3
500 DET=SUMF2*SUMH3-SUMF3*SUMH2
510 ALPHA=AE-1 . 0/DET* C SUMF1 *SUMH3-SUMF3*SUMH1 )
520 PETA=D-1 .0/nET*(SUMF2*SUMHl-SUMFl*SUMH2)
525 P R I N T * A L P H A * B E T A
530 IF C A P S F ( L F H A - A E ) - 0 - 0 0 0 0 1 ) 5 6 0 ^ 5 6 0 > 5 4 0
540 AE=ALPHA ? D=EETA
550 GO TO 123
560 END
570 F.NDPROG

DATA INPUT
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